HX-20 ASSEMBLER

1630 'TEST FOR <BREAK> KEY

1640 TIM #BREAKFLAG,$MIOSTS
1650 BNE EXIT

1660 '

1670 °

1680

"DISPLAY vu.
LOR .
LDX #({xr. Z)#256)+YPOS
JSR DSPLCH
LDA A #COLON
LDX #((XPOS+5)#254k)+YPDS
JSR DSPLCH

"READ AND DISPLAY TIME
BSR DISPLAYTIME

REFERENCE MANUAL

H~x—28 ASSEMBLER

REFERENCE MANUAL

H®~20 Assembler Reference Manual:
First Edition (C) I.M. Wald October 198%
Second Edition (C3 J.M. Wald July 1987

Assembler wersions:

Jooand 101d () JLM. Wald August {983
2c and 1.2d (£) J.HM. Wald June 1986

ar (Cy J.M. Wald December 1986

ir ¢C3 J.M. tald January 1987

L2 (0 I, Wald February 1987

3z, 2.3d and 2.3 {0) I.M. Wald May 1987

3 (3 IO P r— e

Epson 15 3 trademark of Epson Corporation
Microcassette is a trademark of Olumpus Optical Company

71 May Tree Close,
Badger Farm,
Winchester,

5022 4JF

ni ted Kingdom

Haticnal: Winchester (0962) 52644

Internaticnal: +44 362 52644

Introduction

Using the assembler
Assembler pasces
Assembler statements
Location counter
Offset
Labels
Local labels
Global labels
Symbal table
Numer 1c expressions
Operands
Monadic operators
Dyadic operators
5trings
ficcessing assemblar operands from BASIC
Object code
Listing file
Page heading
Page body

Memory locations used by Assembler

Asseabler cosmands

Contents

Chapter 1

[N
—

[\
pu]

~ [SEEE ST N [
[T N U S O S
. B R N .

[ah]

%]
2 N in on
H . . h
ot

[SRS B =

nY

2
=)

[0
el vl [\
—

2.18

Chapter 3

Prograsming the HD6301
HU6301 instruction set

HD6301 addressing modes
Relocatable programs

Using multiple source files
Header file

The first source file

The second source file

The final source file

Loading Assembler

Loading Assenbler from ROM cartridge or microcassette
Making a back-up copy on microcassette

Loading Assenbler from disk
Making a back-up copy on disk

Installing Assembler on ROM

HD6301 instruction set

Error messages

Clock program

Listing of the clock program

Multiple file clock program
Header file
First source file

Second source file

Chapter 4
4.1
4.1.1

Chapter S

Chapter 6

E= B » S =
A N e

Appendix 1

Appendix 2

Appendix 3

fppendix 4
4.1

fippendix 5
AS. 4

&
.
r

X
n
A

Introduction Chapter 1

#ssembler is an exterded BASIC module that allows you to include
HDA301 assembly language programs as in-line code within BASIC
programs. You can 3lso use Assembler as a corwentional assembler
for programs written entirely in assembly language. Assembler
provides the following features:

. fAssembler is written in machine code and is linked into the
Epson operating system. The area below MEMSET remains free
for use by other machine code routines

. The ability to include assembly language directly in a BASIC
program. The assembly language code is assembled when you run
the BASIC program

® Program editing using the standard full screen BASIC editor

e Full implementation of hoth local and global labels. Global
labels can be used to access routines defined in a separate
source file. You can also include labels in numeric
expressions

® Expressions can include any BASIC operator or function,
including user defined functions

¢ Ohject code is written to memory and can be saved in a file
using a SAVEM command

® Production of a listing file using any BASIC device

This manual is intended for use by programmers who are already
familiar with the HD63D1 family of processors.

The following manual is a useful source of additional information:
H8~20 Technical Reference Manual Epson, H8294@18-8 Y202990885

A help and information service is provided by writing to:

Julian Wald,

71 May Tree Close,

Badger Farm,

Winchester S022 4JF

Tel: Winchester {09623 52644

enclosing a stamped addressed envelope.

1-1

2.1

Using the assembler Chapter 2

The assembler allows you to include an asseably language source
program in & BASIC program. The ASHM command (see Chapter 3) is
used within a program o switch between assembly language and
BASIC. The source program is entered using the BASIC editor and
line numbering facilities. All the standard BASIC commands,
statements and functions are available for use in the assembler.
This means that you can use any function or operator in an
expression that is used as part of an assembler statement. The
source program is assembled by RUNning the BASIC program that
contains the sowce program.

Appendix 4 contains a program that displays a clock on the LCD.

fissembler passes

In order to assemble a program, the assembler normally reads the

source code in two passes. This can be performed by enclosing the
source code in a FOR. .NENT loop, where the loop control variable is
used by the ASM command (see Chapter 3 to specify the pass number.
The pass numbers are as follows:

{ This is used for the first pass. The assembler defines labels
and checks for syntax errors

2 This is used for the second pass in single file assembly. The
assembler may redefine labels, generate object code or
generate a listing file. The assembler always checks for
errors during this pass

This pass replaces pass 1 for the first source file in
nultiple file assembly

d

4 This pass replaces pass 2 for the first source file in
multiple file assembly

5 This pass replaces pass | for the second and subsequent source
files in multiple file assembly

This pass replaces pass 2 for the second and subsequent source
files in multiple file assembly

O

2.3

For example,

18 MEMSET £HB@8:FOR I=1 TO 2

15 A I
28 ORE £HAd8 sFIRST LINE OF SOURCE CODE
89 : sLAST LINE OF SOURCE CODE
99 ASH OFF
95 MEXT 1

causes the assembler to read the source code twice using passes |
and 2.

fissembler statements

An assembler statement has the following form:

[{label>] [|<{assembler command>|l [{comment>]
{instruction>

where:
<label> is either a local or a global label (see section 2.4)

{assenbler command> is one of the assembler commands described in
Chapter 3

{instruction? is an HD6301 assembly language instruction described
in Chapter 4 and Appendix 2

{comment> is a comment, or remark, prefixed by a semicolon (;).
Note that a comment is terminated by the end of the line or by a
colon (). Comments differ from BASIC remarks in that comments can
be included within multiple statement lines

The assembler allows more than one statement on a line, using a
colon (:) as a separator.

Location counter

The location counter is & predefined integer variable that

indicates the memory address of the current assembler instruction

or command. The location counter contains the actual address of

Ehe instruction unless a non-zerov offset is specified (see section
).

CaJde

The location counter is assigned an initial value in an ORG command
{see Chapter 3} and is updated automatically by the assembler.

The value of the location counter can be used in an expression {see
section 2.5.1) and is normally represented by *. The value of the
location counter is often used in an expression to produce a
position independent program.

2-2

2.3.1

2.4

For example,
STARTOFFS EQU START-x

calculates the 16-bit displacement to location START, and ascigns
the displacement to the constant STARTOFFS.

Offset

The offset is a predefined integer variable that is added to the
value of the location counter to obtain the actual memory address
of the current assembler instruction or command.

The offset is assigned a value explicitly in an ORG command (see
Chapter 3), or modified implicitly by a command.

An offset is used either to force relocation in conjunction with 3
relocation table (see Chapter 5, or to assemble a program at a
location not normally available for user programs. For axample,
you may need to produce a relocatable program, or a program that is
to be run in ROM or below &HA48.

If you specify a non~zero offset, the assembler uses the offset to
relocate all references to locations in relocatable instructions
(see Appendix 2. For example, if the offset is 8§HiRAAB, the
instruction

LDX #1668

will be assembled as

LDX #2608

Note that the assembler does not relocate references to locations
below the {lowest address limit> or above the {highest address
limit> {see LMT command in Chapter 3).

The value of the offset can be used in an expression {see section
2.3.1) and is normally represented by “.

Labels

A label is a symbol, or name, that represents either an address or
an item of data. A label is assigned a value either explicitly
using an EQU command (see Chapter 3), or implicitly by labelling an
assembler instruction or command. For example,

COLON EQU "\:"

assigns the ASCII value of the colon character to the label COLOM.

2-3

Similarly,
START ORE &HMB

assigns the value &HA4B to the label START. HNote that COLOM
represents an item of dats, whereas START represents an address.

A label is represented by a string of up to 16 alphanumeric
characters, including an underscore (_}. Hote that the first
character must be alphabetic. In addition, a label must not start
with 3 reserved word, nor contain a reserved word immediately
following an underscore. For example,

START
PRNTER_SET
SWITCHION

are valid labels, whereas

PRINTER.OFF
EXPRESSION
LETTER

are invalid labels.

Labels are often used to represent the destination of branch and
jump instructions. In other words, labels perform a similar
function to line numbers in 6070 and GOSUB instructions in BASIC,
Labels are also used to represent memory locations, and as data
constants.

Local labels

A local label is held as an integer wariable that contains the
value of the label. A label is always an integer variable even if
it is not declared with a trailing percent sign (). A local label
must be declared either in the first column of a statement, or with
a leading full stop (). For example,

18100P LDAAM ;DECLARED ON FIRST COLLMN
18 .L00P LDA A #4 ;DECLARED WITH LEADING FULL STOP
18 LOOPz DA A ¥ sDECLARED ON FIRST COLUMN WITH PERCENT

are all valid declarations of label LOOP.

You can usually include the value of a local label in an expression
in the same way as you would use amy other integer variable in
BASIC. However, there are restrictions on the use in expressions
of local labels that contain underscore characters (see section
2.7,

l\'.)
£

2.4.2 Global labels

Global labels allow cross references between source files (see
Chapter 6). For example, you may need to assemble a program that
has more source code than the available memory in the computer. In
this case, the source code must be assembled in small sections.
However, local labels are erased by BASIC whenever a new file is
loaded into memory, so you will need to use global labels to refer
to routines and locations not defined in the current source file.
Global labels are stored in a RAM file which must be set up before
use (see section 5.1 in HN-20 BASIC Reference Manual). HNote that
each source file must contain the same RAM file specification.

A global label is held as a single record in the RAM file. The
format of a record is a tuo byte integer that represents the value
of the label, followed by a string that represents the name of the
label.

Figure 2-1
Global label RAM file record structure

Label value Label name
(Integer) {String)
i T U | T J
2 bytes n~2 bytes
n b&tes

The name is truncated or space-filled to fit the record size
specified in the DEFFIL statement. Note that you should specify a
record length of at least three bytes and not more than 18 bytes.
The record length that you select will affect the number of
significant characters in global label names. For example, a
record len%th of 18 bytes allows global label names where only the
first eight characters are significant. The size of the RAM file
is the number of global labels multiplied by the record size.

A global label is declared with a leading exclamation mark ().
For example,

'CLOCK ORB €HMd8
'HERE EQU *

are both valid declarations of global labels. Hote that a
reference in 3 source file to a global label must always include
the leading exclamation mark, for example

JSR 'CLOCK

Global labels can be included in expressions (see section 2.5.1).

2-3

2.4.3 Symbol table

(X%
[5)]

2.5.1

The symbol table is the set of all labels currently defined. You
can obtain a listing of the symbol table using the SYM command (see
Chapter 3).

Numer ic expressions

The assembler accepts any numer ic expression that conforms to the
following syntax:

{operand>
<{monadic operator’ {operand>
{operand> {dyadic operator} {operand>
{{operand>}
where:
<operand® is one of the operands described in section 2.5.1

<monadic operator? is one of the monadic operators described in
section 2.5.2

{dyadic operator? is one of the dyadic operators described in
section 2.5.3

Operands ’

The assembler allows you to use an extensive range of operands. In
additign, you can treat an entire BASIC expression as a single
operand.

The assembler allows you to use the following operands:

® HNumeric constants. The following types of numeric constants
are allowed:

- In the default input base {see the RAD command in
Chpater 3), and starting with a numeric digit

- Hexadecimal, preceded by 8{ or by $

~ Decimal, preceded by &

- Octal, preceded by & or &0

- Binary, preceded by &B or %

- A one or two character string enclosed in double
quotation marks, for example "AB". HNote that either

character in the string may be 3 metacharacter (see
section 2.5)

2-6

2.3.2

2.5.3

Labels. HNote that references to udefined iabels are currently
assigned a value of zero, and are flagged by a U in the flag
field of the listing

The lacation counter, represented by *
The offset, represented by *

The memory address, that is the location counter plus the
offset, represented by 8

The count of the number of global labels defimed in the
program, represented by !

A BASIC expression enclosed in parenthesis. # BASIC
expression is any numeric expression accepted by the standard
HX-20 BASIC interpreter. Note that a BASIC expression is
evaluated by the HX-20 BASIC interpreter and not by the
assembler. For example, (6144888\256) returns the value 2488

A numeric expression

Monadic operators

A monadic operator is an operator that takes a single walue as an
arqgument and returns a single value as a result.

The asembler accepts the following monadic operators:

+

EXT

BYT

NOT

Monadic identity
Negation

Sign extension. This operator extends an 8-bit unsigned
number to a 16-bit signed number

Sign reduction. This operator converts a signed 16-bit number
to an unsigned 8-bit number

Logical inversion

Dyadic operators

A dyadic operator is an operator that takes a pair of walues as
arquments and returns a single value as a result.

The assembler accepts the following dyadic operators:

2.6

+ 16-bit signed addition
- 16-bit signed subtraction
, 16-bit signed multiplication

16-bit signed integer division (truncates result towards zero}

/
\

M 16-bit signed remainder after division
AND Logical AND

OR logical OR

EQU Logical XOR

IMP Logical implication

<

{=

> Signed comparisons. These return a value of -1 if true
»= and @ if false

o

Lo

LS Unsigned comparisons. These return a value of -1 1f true
HI and 8 if false

AR Arithmetic and Logical shift right. The left argument is

LSR shifted right by the number of places specified by the
magnitude of the right argument. A negative right argument
produces a shift left

ROR Rotate right. The low order byte of the left argument is
rotated right through the high order byte by the number of
places specified by the magnitude of the right argument. A
negative right argument produces a rotate left

Strings

A string is a collection of one or mare characters enclosed in
double quotation marks (*). HNote that any character in the string
may be a special character known as a metacharacter.

Metacharacters allow you to include character codes that fall
outside the range for alphanumeric characters. For example, you
might find it useful 1o be able to include control character codes
in your program. The metacharacters usually consist of a special
symbol followed by an alphanumeric character. The assenbler
interprets both the special character and the alphanumeric
character as one character.

2-8

The five types of metacharacters are:

*{char >

#z{char>

{char>

\{char>

A single apnstrophe (°}) represents the double quotation
mark character {"). The double quotation mark 1s
normally not allowed in a string as it is used to delimit
the start and end of the siring

A character preceded b¥ a caret (* represents the
character with an ASCII code 64 less than the ASCII code
of the specified character. For example,

I,K"AJI

is a string containing the control codes for carriage
return {ASCII code 13) and line feed (ASCII code 18}

A character preceded by a percent sign (%) represents the
character with an ASCII code 64 greater than the ASCII
code of the specified character. For example,

Iml
is)a string containing the code for a lower case letter P
(p

A character preceded by a vertical bar (i) represents the
character with an ASCII code 128 greater than the ASCII
code of the specified character. In other words the
vertical bar sets the most significant bit in the
specified character code to one. For example,

I:JI

is a string containing a single letter J that has the
most significant bit set to one

The reverse solidus (\} enables you to include a symbol
that normally has a special meaning. The reverse solidus
is used to include the metacharacter symbels, the colon,
and the HX-20 graphic symbols in a string. For example,

This string contains a ’’ character"”

is a string containing:

This string contains a "*" character

Hote that you can change the double quotation marks into
apostrophes by preceding each apostrophe by a reverse
solidus as follows:

*This string contains a \’\™\’ character®

2.7 Accessing Assembler operands from BASIC

N
.

To include assembler operands, for example global labels, in a
BASIC expression you must enclose the operand in parenthesis. For
example,

(x)
('CLoCK)

represent the wvalue of the location counter and the value of the
global label !CLOCK. Hote that you must precede a string by a plus
sign {+) and a local label by a full stop (.} if you enclose either
type of operand in parenthesis.

For example,

(+"A")
{.STARD)

represent the values of the string "A" and the local label START
respectively.

Note that you can refer to a local label as an integer variable in
an expression. However, you cannot refer to a local label that
contains an underscore character except by enclosing the name,
prefixed by a full stop, in parenthesis.

Object code

The assembler places the cbject code in memory, if you have enabled
the production of object code. Object code production is enabled
in passes 2, 4 and 6 using the 0BJ command (see Chapter 3). You
can disable the production of object code using the NOB command.

You must use the MEMSET command (see Chapter 3 and section 3.3.1 in
Hx~20 BASIC Reference Manual) to reserve enough memory for the
object code produced by the assembler.

You might find 1t useful to be able to reserve exactly enough
memory, and no more, for the object code. To do this the following
routine can be used:

188 DEFINT A-Z:1=1:G0SUB 298: MEMSET (8)
118 DEFINT A~Z2:FOR I=1 TO 2:605UB 288:NEXT I
igg Eﬁgc START *EXECUTE PROGRAN

148 ’

208 ASH |

218 START ORG &HAdE ; START OF PROGRAM
28 08J sENABLE OBJECT CODE
;LINES OF SOURCE CODE

998 ASH OFF
998 RETURN

2.9

2.9.1

In this routine line (@@ partially assembles the code using pass 1.
This ensures that the address of the last location used plus one is
knoun. The MEMSET command is %iuen this value as the first
available location for BASIC, thus ensuring that no memory is
wasted. Houwever, MEMSET has the side effect of erasing all
variables and declarations, so the assembler is re-run using both
pass | and pass 2. MNote that you can use a zimilar routine to

reserve memory 1n multiple file assembly (see Chapter 6).

Listing file

The assembler allows you to request a listing file when the program
is assembled. A listing file is produced only during passes 2, 4
and 6. The listing file contains a formatted copy of the source
program and object code. You can specify that the listing file is

divided into pages and specify a page title. The page title
includes the date and time of assembly.

The format of each page is given in the following sections.

Page heading

The assembler prints a heading at the top of every page of the
listing file. The farmat of a page heading is as follows:

{Page-number > <Date> {Time>» (Title>
where:

{Page-number > is the number of the current page. MNote that the
page number is given as 3 five digit number with leading zeroes,
starting with page 8@281. The page number is reset to B@BA1 at the
start of pass 2, but retains its current value at the start of pass
4 and 6

{Date> is the current date and is obtained from the HX-20 internal
clock. The format of the date is mm ddryy where mn is the month,
dd is the day, and yy is the year in the century

{Time> is the current time and is obtained from the HX-28 internal
clock. The format of the time is hhvmm/ss where hh is the hour in
the 24 hour clock, am is the minute, and 55 is the second

{Title> is either blank or contains the user-specifed title. The
title is specified by the TTL command (see Chapter 3)

The heading is separated from the remainder of the page by a blank
line. HNote that the page heading is truncated if the page width
specified in the FMT command {(see Chapter 3) is too small.

2.9.2

2.18

Page body

The format of each line in the page body is as follows:
{Line-number > {Flag> <{Address> {Object-code> {Label> {Source-statement}
where:

{Line-number > is the BASIC line number of the current statement,
given as a five digit number with leading zeroes

<Flag> is either blank or contains one of the following:
y The line contains a reference to an undefined label

J A MP or JSR instruction is within the range for a branch
instruction, so a branch instruction can be used instead

B The range of a branch instruction is within 16 bytes of the
maximum allowed. Note that a J flag may change to a B flag
where appropriate

D The label has been defined more than once

{Address? is either blank or contains the hexadecimal value of the
location counter {see section 2.3). However, if the current
instruction is an EQU command (see Chapter 3}, {Address> contains
the hexadecimal value assigned to the label. HNote that if the
address is relocated, the address is flagged by a plus sign (+

{Object-code> is either blank or contains the hexadecimal
representation of the object code. Hote that any object code that
is relocated is listed in its unrelocated form and is flagged by a
plus sign (+

{Label> is either blank or contains the name of the label defined
in the current source statement.

{Source-statement? is a copy of the current source statement,
excluding any label defined in the current source statement.

Note that a line is truncated if the page width specified in a FMT
command (see Chapter 3) is too small.

Memory locations used by Assesbler

The assembler uses locations &H68 to &HOF, 8H2CH to &HZCF and the
area above RAMADR as a3 temporary work area. If you need to use any
of these areas, you must ensure that you save any important
contents before you use the Assembler.

Assembler comsands Chapter 3

This chapter provides you with full details of the assembler
commands avallable. The commands are described in alphabetic order
and are in the same format as Chapter 3 and Chapter 4 of HX-20
BASIC Reference Manual.

3-1

FORMAT

EXAMPLE
REMARKS

See also

FORMAT
PURPOSE
EXAMPLE

See also

ASM

ASM 1<{numer it expression>!
1CONT
10FF

To start, continue or terminate assembly

ASH 1

The ASH command is used to switch betueen BASIC and the assembler.
To enter the assenbler from BASIC use the ASM command followed by a
numer ic expression to specify the current pass. The pass number is
usually specified as the control wariable in a FOR..NEXT loop which
encloses the code to be assembled.

;thgSM OFF command is used to terminate assembly and return to
ASIC. :

The ASM CONT command is used to re-enter the assembler after an ASH
OFF command.

0BJ, LST and section 2.1 Assembler passes

EQu

{label> EQU {numeric expression>

To assign a specified value to a label

SHSCOM ~ EQU &HFF19

The EQU command assigns the value specified by <numeric expressiony
to <label>. HNote that a MO error occurs if no label is specified.

Note also that a DD error occurs if a label is re-defined in RDF N
mode.

ROF, ORG and section 2.4 Labels

FCB

FORMAT FOB i{rumeric expression>i{, i{numeric expression>i....]
Hstring i Kstring? H

PURPOSE To fill contiguous bytes with the specified data

EXAMPLE F(B 18,23,5,8
FCB " Message®,13,18,8
FCB "Another Message*M*J+@"

REMARKS The FCB command fills contiguous bytes with the given data. The
data can include either numbers or strings, or any rcombination of
the two types of data.

Numer ic expressions must evaluate to zero or a positive number less
than 296, otherwise a FC error occurs.

Strings must be enclosed in double quotation marks (") and may
include metacharacters. For example, ""M*J'@" is a string
containing a carriage return followed by 3 line fead and null
character.

See also FDB, RMB, RDB, section 2.5 Mumeric expressions and section 2.6
Strings

FDB

FORMAT FDB {numeric expression>[,{numeric expression’....]
PURPOSE To fill contiguous double bytes with the specified data

EXAMPLE FDB 18,23,5,8
FDB SHSCOM, *-START, FETCH-HERE ;LABEL UALUES

REMARKS The FDB command fills contiguous double bytes with the given data.
This command is particularly useful for setting up a table of
addresses, as in the second example above.

See also F(B, RMB, RDB and section 2.5 MNumeric expressions

FORMAT

FMT

FNT [{page length>1[,[{page width}][,[{start col>]
[,[{header string>1(,{irailer string>111

To specify the page size

FNT 68,08
FNT vas IA["I, aapn
FMT 235,32,1

The page length is set to {page length?, or to the default if none
is given. The default page length is 68 lines or the last value
given. HNote that a page length of 235 lines is interpreted as an
infinite page length.

The page width is set to {page width?, or to the default 1f none is
given. The default page width is 88 characters or the last value
given. Any value greater than 128 is truncated to 128. If the
device width is smaller than the line width, the line is truncated
to fit the device. The value of <{page width> must be at least 3.

The start column is set to {start col?, or to the default if none

is givan. The default start column is 1 or the last value given.

Any value greater than 128 is truncated to 128. If the page width
plus the start column exceeds 128, the page width is truncated.

The header string sent at the start of every page is set to {header
string?, or to the default value if none is given. The default
header string is "" or the last value given.

The trailer string sent at the end of every page is set to <{trailer
string?, or to the default value if none is given. The default
trailer string is " or the last value given.

See also LST

34

FORMAT

EXAMPLE

See also

FORMAT

EXAMPLE

See also

LMT

LMT [{lowest address limit>1{,<highest address limit>]
To specify the lowest and highest addresses used in relocation
LMT &HAd8,8-1

The LMT command is used to specify the lowest and highest addresses
to be relocated when using a non-zero offset in an ORG command.

At the start of a program, after an ASM command using pass | or 2,
the éomest address limit is &HA48, and the highest address limit is
EHPFFF.

If you specify a new <{lowest address limit> but no new <highest
address limit), the current value of <highest address limit> is
retained. Similarly, if you specify a new <highest address limit>
but no new <lowest address limit> the current value of {lowest
address limit> is retained.

ORG, TBL, Section 2.3 Location Courter and Chapter 5 Relocatable
programs

LST

LST [i[#){BASIC file number>:]
i{device descriptor> |

To generate a3 listing file during pass 2, 4 and 6

LST "68N1B"*

The LST command enables the production of 2 listing file.

The listing file is sent to the specified device or BASIC file, or
the default if none is given. The default is the RS232 port or the
last file or device specified. The file descriptor is either "IV
for the microprinter, or "BLPSC" for the RS232 port. BLPSC are the
parameters used in the BASIC OPEN "COMB: " statement

FHMT, NOL, PAG, TTL and section 2.9 Listing file. Refer also to the

OPEN and CLOSE statements in HX-28 BASIC Reference Manual, and to
section 5.2 Seguential files in the same manual.

35

FORMAT

See also

FORMAT

See also

MEM

MEM (lowest memory limit>[,<highest memory limit>]

To specify the range of memory allowed for object code
MEM $088, $7FFF

The MEM command spacifies the lowest and highest nenor? addresses
allowed for cbject code, changing the previosly set values or
defaults

At the start of assembly, after an ASM command using pass 1 or 2
;Ee éauest memory limit is 8HA48 and the highest address limit is
MSET-1.

If you specify a new {lowest memory limit> but no <highest memory
limit> the current value of <highest memory limit} is retined.
Similarly, if you specify a <highest memory limit> but no {lowest
memor y éimit) the current value of <lowest memory limit? is
retained.

LMT

NOB

NOB

To disable the production of object code during pass 2, 4 or 6

NOB

The NOB command disables the production of object code during pass
2, 4 or 6. This command is particularly useful if you only want to
assemble part of a file. MNote that a NOB command is not necessary

in pass 2, 4 or 6 if no OBJ command has been given, as the
assembler assumes 3 NOB command and does not produce object code.

08J

FORMAT

See also

FORMAT

See also

NOL.

NOL
To disable the production of the listing file during pass 2, 4 or 6
NOL

The HOL command disables the production of the listing file enabled
by 8 LST command. This command is particularly useful if you only
require part of the file to be printed out, for example when you
are using a routine for which you already have a listing. HNote
that a NOL command 1s not necessary if no LS5T command has been
given, as the assembler assumes a NOL command and does not produce
a listing file. To re-enable the production of the listing file
use the LST command.

LSt

oBJ

pBJ
To enable the production of object code during pass 2, 4 or 6
0B8J

The OBJ command enables the production of object code during pass
2, 4 or 6 of the assembler. The object code produced is stored in
memory at the address calculated by adding the value of the
location counter to the offset walue given in an ORG command. HNote
that if you specify a non-zero offset, the assembler automatically
relocates the object code. fny relocated references in the object
code are flagged by a + sign in the listing file.

MOB, DRG, LST, section 2.8 Object code and section 2.9 Listing file

3-7

FORMAT

EXAMPLE

See also

FORMAT

EXAMPLE

See also

ORG

ORE [{origin>1l[,{offset>]
To specify the value of the location counter and the offset
ORS &HAde

it the start of the program, after an ASM command using pass 1 or
2, both the location counter and the offset are zero. The ORG
command 3llows you to specify a new value for the location counter
(<origin>) and offset ({uffset’). You must zpecify <origin® and
{offset? as numeric expressions.

If you specify a new <origin? but no new <{offset’, the current
value of the offset is retained. Similarly, if you specify a new
{offset> but no pew <origin?, the current value of the location
counter 1s retained.

Note that if you define a3 label in the same statement as an ORG
command, the label is assigned the naw value of the location
counter and not the location of the ORG command. In other words,
the label is assigned a value after the ORG command is executed.

Sections 2.3 Location counter, 2.3.1 Offset and 2.4 Labels

PAG

PAG

To start a new page in the listing file

PAG

The PAG command forces a new page in the listing file. The command
takes effect at the point at which the command is given. Hote that
this command is ignored if an infinite page length has been
selected using the LST command.

LST and TTL

RAD

FORMAT RAD i<input base>[,<output base)]‘
1,{output base>

PURPGSE To specify the input and output rumeric base

EXAMPLE RAD 8D18

REMARKS The RAD command sets the default input and output bases. The
defaults are initially 8018 and &H1@ respectively. The output base
is used only in the HD638! Debugger.

See also Section 2.5.1 Operands

RDB

FORMAT RDB <{rwmeric expression>

PURPOSE To reserve a specified number of double bytes of storage

EXAWPLE ROB 258

REMARKS The RDB command advances the location counter by the number of
double bytes specified by <numeric expression’. HNote that the
reserved space is not initialised to any particular walue.

See also RMB, FCB and FDB

3-9

FORMAT

RDF

ROF Vi

N
To enable or disable the re-definition of labels
RDF N
The ROF command allows you to re-define the values of labels within
a program without causing a DD error. The V¥ parameter enables the
re~-definition of labels, and the N parameter disables the
re-definition of labels.

The example below shows a situation in which the RDF ¥ command is
useful:

ROF Y ;ENABLE RE-DEFINITION
SIZE EQL TBLEND-TBLSTART ; TABLE SIZE

ROF N ;DISABLE RE-DEFINITION
TBLSTART RMB 108 s RESERVE TABLE SPACE
TREND EQU * END OF TABLE + 1

Normallg the assembler assigns values to labels during pass 1, 3

or 5. The RDF ¥ command forces the assembler to re-calculate the
value of SIZE durin% pass 2, 4 or 6 when the values of TBLSTART and
TBLEND are known. The RDF N command is used to ensure that no
other labels are re-defined. HNote that you must use RDF ¥ and RDF
N commands in pairs.

The assembler assumes a RDF N command if no ROF command is giwen.

See also EQU and section 2.4 Labels

See also

FORMAT

EXAMPLE
REMARKS

See also

RMB

RMB {numeric expression’

To reserve a specified number of bytes aof storage

RMB 508

The RMB command adwences the location counter by the number of
bytes specified by {rumeric expression>. HNote that the reserved
space is not initialised to any particular value.

RDB, FCB and FDB

S¥M

S [IL1]
Y

To produce a symbol table listing
S 6

The SYM command produces a symbol table listing in the listing

file at the point at which the SYM command is given. The format of
the table is one label per line together with its current value
(address) in hexadecimal. The L parameter produces a symbol table
far local labels only, and the & parameter for global labels only.
If no parameter is given, the symbol table contains both local and
global labels. Hote that the labels are listed in alphabetical
order of initial letter only; global labels first, followed by
local labels.

Section 2.4 Labels and section 2.4.3 Symbol table

3-11

FORMAT

EXAMPLE

See alsp

FORMAT

See also

TBL

TBL [{rumeric expression>]
To enable production of 3 relocation table
TBL. &H6088

The TBL command is used to enable production of a link table. The
link table is used to relocate programs. The object code is
assepbled with an origin of <numeric expression’, regardless of the
value of <origind and {offset>. The object code is placed in
memory at {origin>+offset>. The TBL command has no effect if
{offset? is zern. Only references between <{lowest address limit)
and <highest address limit> are relocated. The value of {offset)
is altered by the TBL command to {old offset>+({highest address
limit>-<{lowest address limit»)\8+1. This alteration is made to
enable the correct amount of memory to be reserved for the link
table. The {origin> is NOT affected.

ORG, LMT, TBL, =and Chapter 5 Relocatable programs

TTL

TTL {string>
To set up a title and start a new page on the listing file
TTL “Simple Clock Prograa”

The TTL command sets up the title which is printed at the top of
every subsequent page on the listing file, if a listing file has
been opened. The title will also include the date and time of the
listing. The time given will be the time that the title is set up,
and not the time at which the file is actually listed. Thus, if
you set up several titles within one listing file, each title will
contain a different time.

PAG, LST and section 2.6 Strings

3-12

4.1

Prograssing the HD6301 Chapter 4

The Hitachi HD6301 is an eight-bit processor based on the Motornla
MC6800. The HDB30! can access 3 maximum of 63536 eight-bit memory
locations. The Epson HX-20 contains two HD6301 processors in a
master and slave relationship. However, the user can program only
the master processor. The slave processor is reserved for
input-output operations.

HD6301 Instruction set

There are 81 instructions in HD6301 assembly language {see Appendix
2). Each instruction 1s represented inside the computer as a
unique eight bit binary number known as the op-code. However, 3
program written as a series of op-codes can be confusing and so
each 1nstruction is also represented by a mnemonic. Thus the rwo
operation instruction is written as NOP and has the op-code &HBi.
The purpose of an assembler is to convert a program written using
mnemonics into the internal op-cade representation.

fiopendix 2 provides details of the HD6301 instruction set divided
into the following six categeries:

* Data movement. The data movement instructions move data
between two registers, or between a register and memory. This
section includes instructions to set or clear flags

. Arithmetic. The arithmetic instructions perform arithmetic
operations. This section includes the arithmetic shift
instructions

¢ logical. The logical instructions perform the logical
operations AND, OR and exclusive OR. This section includes
the logical shift and rotate instructions

L Comparison and test. The comparison and test instructions
compare the contents of a register with another register or
memory. This section includes instructions to test the value
of individual bits in a register or memory location

[Branch. The branch instructions transfer program control to
another part of the program

® Program transfer and miscellaneous. This section contains

instructions to transfer program control and control
interrupts

4-1

4.1.1 HD6301 addressing modes

The location of data used in an instruction is specified using one
of the following six addressing modes:

Immediate. In this mode the data is contained as a constant
in the instruction. The immediate addressing mode is
reprasented by a numer ic eapression preceeded by a hash sign
8, or a pound sign (£) on the English keyboard. For
example,

LDA A #18
loads accumulator A with the constant value 18

Direct. In this mode the data is contained in a memory
location with an address in the range @ to 255 (8HB to 8HFF).
The direct addressing mode is represented by a numeric
expreTsion optionally precezded by a dollar sign ($). For
example,

STA A &HO8
stores the contents of acoumulator A in location &H8B

Indexed. In this mode the data is contained in a memory
location with an address specified as a constant positive
offset from the contents of the index register. The indexed
addressing mode is represerrted by a numeric expression
arecered by a letter X and an optional plus sign {+). For
example,

LD¥ #&H1008
LDA A X44
LDn B ¥

loads accumulator A with thw contents of location gHi884 and
accunulator B with the contents of location SH1688

Extended. In this mode th: data is contained in a memory
location. The extended adckessing mode is represented by a
numer ic expression. For esample,

JHP SHDFFD

transfers program control 4o location &HDFFD. Note that if
the extended address is below &HIB8 the assembler will
automatically use direct addressing where possible

Implied. In this mode the data is contained in a register or
memory location implicitly specified by the instruction. For
example,

CR A
INC B

clears accumulator A and increments accumulator B

Relative. This mode is used to specify the destination of
branch instructions. The data is the offset from the address
of the branch instruction to the destination address. The
assembler doas not use relative addressing, but expects an
extended mode address to be supplied as the destination of a
branch. The assembler converts the supplied extended mode
address into the relative offset required by the HD6301. The
extended mode address is usually a label. For example,

BRA START
transfers program control to label START

4-3

Relocatable Programs Chapter 5

fl relocatable program is 3 program that makes no references to any
fixed memory locations within the program area, and can therefore
be run anywhere in memory. Relocatable programs are particuarly
suitable for use on the HX-20 as all application files must be
relocatable.

One problem caused by ralocatable programs is that all addresses
must be ultimately be specified as offsets from a particular
location. This location must be calculated. This is difficult as
the HDG301 does not allow you to read the contents of the program
counter to obtain the current location of the program.

gne method of finding the current location of a table is given
e]ow:

BSR LABEL1
TRLE :
LABELL PUL X or PUL A

P B
;8 or D contains absolute address of TABLE

Note that a pseudo subroutine call is used to push the address of
TABLE on the stack. This address is then later pulled off the
stack. The program continues to run from LABEL which is the first
address after the table.

The two locations LABEL and TABLE could be the same location, as
follouws: :

BSR LABEL1
LABELL PUL ¥ or PUL A
PUL B
;# or D contains absolute address of LABEL1

In this case the routine is used merely to find the address of
LABEL1.

fissembler provides an alternative system to enable you to write
relocatable programs. Assembler allows you tn write a3 relocatable
program as if it is an absolute program, and use a link table to
relocate absolute references at run time. The assembler can
automatically produce a link table using the LMT and TBL commands
(see Chapter 3). Hote that the format of the link table produce is
compatible with that required by the LOAD OPEN command in the Epson
TF-20 Disk drive.

A suitable routine to perform the relocation is listed below:

5-1

ORIGIN
PEMSTRT
PGHMEND
LMKSTRT
TePt

START

- LNKLOOR

.BVTLOOP

NONREL

EXIT

LNKTBL

et T TITTE

3E8388F%5 BE BEE gE

EF

IT

=

-"ggﬁ2335§§§§§§§§33£§§

g
E:

;OBJECT CODE ORIGIN
;PLACE OBJECT CODE # s$ndd i

;ADDR OF START OF PROGRAM
;ADDR OF END OF PROGRAM
;ADDR OF START OF LINK TABLE

;POINTER TO PROGRAM
;POINTER TO LINK TABLE

;s INITIALISE STACK

;D = START
;D = LNKTBL

;SAVE PROGRAM POINTER
sBIT COUNTER
36ET LINK BYTE

;UPDATE LINK TABLE POINTER
;RESTORE PROGRAM POINTER

; TERMINATE LOOP IF ALL DONE
;6ET LINK BIT INTO (C)
; IF 8 NO RELOCATION

;SAVE LINK BVTE + BIT COUNT
;6ET ADDRESS TO RELOCATE

; SAUE RELDCATED ADDRESS

;RESTORE LINK BYTE + BIT COUNT
;NEXT PROGRAM BYTE

;8 TIMES FOR 1 LINK BYTE
;NEXT LINK BYTE
;EXECUTE PROGRAM

;RELOCATION LIMITS
;ENABLE LINK TABLE
;MEMSET MUST BE SET TO (@

Using sultiple source files Chapter 6

You can assemble a program in several sections if there is
insufficient memory in the computer for the complete source code.
The source code is divided into several small files, and a header
file is written. The header file contains initialisation
information and is RUN to assemble the souwrce code. Appendix 3
contains a multiple source file program that continucusly displays
a clock on the LCD.

Hultiple source file assembly operates as follows:

The header file initialises a pass flag to 1. The pass flag
indicates the current assembler pass required. The header file
also sets up 3 RAN file and opens a file for the listing file. The
header file then RUNs the first source file.

The first source file defines its RAM file to be the same as that
set up by the header file. The first file then examines the pass
flag. If the pass flag is I, the source code in the first file is
assembled using pass 1 only. Otherwise, the source code in the
first file is assembled using pass 3 followed by pass 4. The first
source file then RUNs the second source file.

The second source file defines its RAM file to be the same as that
set up by the header file. The second file then examines the pass
flag. If the pass flag is 1, the source code in the second file is
assembled using pass 5 only. Otheruise, the source code in the
second file is assembled using pass 9 followed by pass 6. The
second file then RUNs the next source file.

The last source file is similar to the second source file.
Howewver , once it has assembled its source code, it increments the
pass number. If the pass number is now 2, the last source file
RUNs the first source file. Otheruise the last source file closes
the listing file and assembly is completed.

Note that the third and subsequent source files, if any, are
handled in the same way as the second source file. HNote also that
the second source file may be the last source file.

The following sections contain details of the format of each file
required in multiple file assembly.

6-1

6.1

6.3

Header file
The header file consists of the following program:

18 CLEAR 204,8v25544 "MAX 255 GLOBAL LABELS
28 DEFFIL 2,8:PUTx 8,1 *PASS NUMBER

38 OPEN “0",1,"COW8: " ’LISTING FILE CHANNEL
48 VIDTH "COM8:",68 *LISTING FILE WIDTH
58 T=TAPCNT:PUTZ 1,T *TAPE COUNT UALLE

68 RN "FILE1.SRC*,R

The first source file

The first source file consists of the following program:

18 DEFINT A-Z2
28 DEFFIL 2,8:6ETz 8,P ’GET PASS NUMBER
38 DEFFIL 8,4 *SET UP RAM FILE
48 IfF P=1 THEN [=1:605U8 108
5 IF THEN FOR I=3 TO 4:605U8 188:NEXT I
% l,ll\i *FILE2.SRC*,R
108 ASH I
118 ORG &HA8

08J
lm ’STPRT ;START OF PROGRAM

s ;Mth SOURCE CODE LINE

968 ASH OFF
998 RETURN

The second source file

The second source file consists of the following program:

18 DEFINT A-Z
2BDEFFIL2BET?/BP *BET PASS NUMBER
30 DEFFIL 8,4 *SET UP RAM FILE

48 IF P=1 THEN 1=5:60508 106
58 IF P=2 THEN FOR I=5 TO 6:605UB 188:NEXT I

n!
109 ASH 1
: sM+1th SOURCE CODE LINE
: sMth SOURCE CODE LINE
989 ASH OFF
998 RETURN

f.4 The final source file

The final source file consists of the following program:

18 DEFINT A-Z2
15 DEFFIL 2,8:6ETx 8,P °GET PASS HUMBER
28 DEFFIL 8,4 *SET UP RAM FILE
15 IF P=1 THEN 58
38 FOR I=5 TO 6:605U8 188:MEXT I:CLOSE
35 EXEC (!START) ? OBJECT CODE
48 60T 88
58 1=5:605UB 168
59 DEFFIL 2,8
68 PUT: 8,2 *SET UP PASS 2
65 6ET% 1,T:WIND T *HIND TO START
78 MEMSET LIMIT ’ALLOCATE OBJECT CODE SPACE
79 RUN "FILE1.SRC*,R
89 END
% 7
188 AsM I
: sN+1th SOURCE CODE LINE
2 sLAST SOURCE CODE LINE
978 LIMIT EQU * sFIRST UNUSED HEMORY LOCATION
968 ASH OFF
998 RETURN

Loading fissesbler Appendix 1

Loading Assembler from ROM cariridge or microcassette

To load Assembler from a ROM cartridge or microcassette perform the
following steps:

1

(&}

Switch off the HX28 and connect either the ROM cartridge or
microcassette drive tc the HX-28.

Switch the HX28 on, and save any important machine code
programs or data held below MEMSET as these are destroyed when
you link Assembler

Enter BASIC

If you are loading from microcassette, place the program
cassette in the microcassette drive and wind the cassette to
the start of the tape

Type
MEMSET &H2888:L0ADM **,,R
and press the RETURN key

This loads Assembler and runs the linker routine. Assembler
then returns to the main menu and re-enters BASIC. The linker
moves Assembler to a protected area of memory above BASIC, and
resets MEMSET to the base address of &HBA48. The linker is
destroyed and is not copied to the protected area. HNote that
you can now change MEMSET so that you can use the area of
memory below MEMSET for your oun programs.

WARNING: The linker unlinks all ROM
application programs except BASIC and the
monitor. The reason for this is that some ROM
programs are not implemented in a manner
consistent with the use of application files
as described in HX-20 Technical Reference
Manual (Section 2, sub-section 18.4)

If you are using the microcassette drive, rewind the program
tape and remove it from the microcassette drive. If you are
using the ROM cartridge, you may now switch off the Hi-28, and
replace the ROM cartridge with the microcassette drive

Al. 1.1

AL.2

Making a back-up copy on microcassette

To make a back-up copy of Assembler you must use the copy utility.
This utility is provided as part of the linker routine and is
designed to be run before you run the linker.

To load the copy utility perform the following steps:

i Switch off the HX28 and connect the microcassette drive to the
HX28

%)

Switch the HX28 on and save any important machine code
programs or data held below MEMSET, as these are destroyed
when you load the copy utility

3 Enter BASIC

4 Place the program cassette in the microcassette drive and wind
the cassette to the start of the tape

3 Type
MEMSET &H2DOB: LOADM: EXEC &HA48
and press the RETURM key

This loads and runs the copy utility. The copy utility displays
the following:

Copy utility V1.8
Device (WD)
File = ASSEMBLR.REL
Size = 84788 Bytes

Press either M to record on the internal microcassette, or C to
record on an external cassette recorder. The program is then saved
on the specified cassette and the copy utilitg returns to BASIC.
You can now link the program into the system for use by tuping the
fol lowing:

EXEC &HB48
and pressing the RETURN key.

Loading fAssesbler from disk

Assembler is provided on a master disk. However, before you can
run Assembler, you must create an Assembler system disk containing
hoth Assembler and Disk BASIC. To create an Assembler system disk
per form the following steps:

1 Enter Disk BASIC (see section 4.2 of Hx-20 Disk ERSIC
Reference Manual)

AL-2

fl.2.1

AlLL3

2 Place the Assembler master disk in drive A
3 Type
RUN "SYSGEN. BAS"

and press the RETURM key. Follow the instructions provided by
the program to create an Assembler system disk. HNote that you
will require a blank disk that 15 not write protected, a Disk
BASIC system disk and the supplied Assembler system disk
label.

4 The SYSGEM.BAS program corwerts the blank disk into an
fissembler system disk and automatically re-boots BASIC. On
entry to BASIC the Assembler is automatically loaded along
with Disk BASIC, and displays a copyright message to indicate
successful loading. The BASIC program "SYSGEN.BAS" is
automatically cleared from memory. Hote that if there is
insufficient memory available you might find that either Disk
BASIC, or Disk BASIC and Assembler, will not load (see section
4.2 in HX-28 Disk BASIC Reference Manual).

You can now use the Assembler system disk as a replacement for the
standard Epson system disk.

Making a back-up copy on disk

Back-up copies of the new Assembler system disk can be made using
aither the SYSBEN command or the wolume copy facility (see section
3.3 (2) in BX-28 Disk BASIC Reference Manual and section 4.6 in the
same manual).

Back-up copies of the supplied Assembler master disk can only be
made using the volume copy facility.

Installing Assesbler on ROM

To install Assembler on ROM you should perform the following steps:

1 Switch the HX28 off and install the supplied ROM or ROMs
according the instructions given in the document Installing
EPROMS supplied with the product

2 Perform a Cold start {see section 1.1.2 of H¥-28 BASIC
Reference Manual)

3 Select BASIC-ASSEMBLER from the system meru

You can now use the Assembler whensver you enter BASIC

Al-3

HDA30t instruction set fppendix 2

This appendix contains details of all HPA301 instructions for use

with the assembler. The instructions are given in tabular form

and are divided into the following six categories:

) Data movement

) Arithmetic

* logical

¢ Comparison and test

* Branch

¢ Program transfer and miscellaneous

The tables are divided into four main columns. The first column

provides a brief description of the operation. The second column

lists the mnemonic, including the register if required.

Tha third column is divided into five sub-columns, one for each

possible addressing mode. The addressing modes are: immediate

(Imm), direct (Dir), indexed {(Ind), extended (Ext) and implied

(Imp). The possible entries in a sub-column are as follous:

s} The addressing mode is valid for the instruction

. The addressing mode is valid for the instruction. The
instruction may be relocated if a non-zero offset is
specified in an ORG command

Blank The addressing mode is not valid for the instruction

The fourth calumn is used to specify the effect of the instruction

on the six flags: half carry (H), interrupt (I), negative (M),

zero €2), overflow (V) and carry (C). The possible entries under
each flag are as follouws:

R The flag is reset to zero
5 The flag is set 1o one
2 The flag may be set or reset depending on the result of

the operation performed by the instruction

+ The flag is unchanged by the instruction

Table A2-1

Data movement instructions

Qperation Mnemonic Mode Flags
Imm{Dir | Ind|Ext| Imp NiZIViC
Clear carry cLe 0 4|e{¢|R
Clear interrupt CLI 0 +elele
Clear accumulatar{ CLR A o RISIRIR
Of memory
location CIR B 0 RIS{RIR
CLR ol e RIS{RIR
Clear overflow CLyY o +{+[Ris
Load accumulator | LDA A clojfo|we KiRIR|*
LDA B ofolaiwe RIX{R|e
Load double LDA D 0
accumulator cjlocie XIRIR|+
LoD .
Load 5P LDS e |jcolaloe A{ZIRT
Load ¥ LD® elofofe A[XIR]+
Push register on | PSH A 0 slelele
to stack
PSH B 0 tleele
PSH X a slelele
Pull register PUL A] elelee
from stack
PUL B 0 tlelele
PUL X o se|ele
Set carry SEC 0 4405
Set interrupt SET 0 Steieje]e
Set over flow SEV s} o ¢[5]e

A2-2

Operation Mremonic Hode Flags
Imm{Dir | Ind|Ext]{Imp]H[I{N|ZIV
Store accumulator| STA A afofe +{¢{X[%[R
STA B ojnle ¢le[X[XIR
Store double STA D
accumulator ojoje +le|3IRR
STD
Store SP STS ocjole * 4 [RIXIR
Store ¥ ST¥ olole #|#[XIXIR
Transfer A to B TAB o lele|X[RIR
Transfer A& to CCR| TAP 0| See (1D
Transfer B to A TBA 0 [#j#|K|K|R
Transfer CCR to A} TPA 0 {ele|ele]e
Load ¥ with 5P+l | TSX D |efeieis]e
Load SP with ¥~1 | TXS 0 |efe|s]|e]e
Exchange D and X | XDX
0 |eje|e]e]|e
®GD X

{1y CCR is loaded
Bit in A

TR e N LN B U

with the contents of A as

Flag in

A PNZZ—T

LR

follous:

Table A2-2
Arithmetic instructions

Operation Mnemonic Hode Flags
TnmiDir |Ind|Ext|Imp [H{T|N{Z]VIC

Add B to A ABA 0 (X {R{RIRIR
Add B to X ABX O je[e{ei1eieie
Add with carry to| ADC A sjlojlofe Kle|RIRIR{R
accumulator

ADC B ojolofe Kie[RIRIRIR
Add to RDD A clo|[onfwe Ri# XXX K
accumulator

ADD B ofofole AR {RIRIR
Add double ADD B ofofole + 14 |X[RIRIR
Arithmetic shift | ASL A o lele|XIR[X|X
left accumulator
or Wemory ASL B o |#le|RINIXKIR
location

ASL ol e ¢ ¢[XIK]RIR
Doubla ASL ASL D o [ele|R|K[{XIX
Arithmetic shift | ASR A 0 {e{#[X[{X{K]|R
right accumulator
or memory ASR B 0 |#je|R|R[R|X
location

ASR ole #{o[RX|K({A
Decimal adjust A | DAA 0 |e{e|K[K]A]X
Decrement DEC A o |e[e|X|K[X]e
accumulator or
memory location | DEC B 0 |e{elK[X]%]{e

DEC o [+ {R(K]%]e
Decrement 5P DES 0 jeleieleise
Decrement X DEX 0 jelejeikle]e
Increment INC A o je[#|X|{R{R]|e
accumulator or
memory location INC B o ojefe|XIX{R]e

ING o sle|XiRiXle

A2-4

Operation Mhemonic Hode Fla%s
Imm|Dir | Ind{Ext{Imp|H{I|N|Z|V|C
Increment 5P INS 0 seiele
Increment ¥ TN 0 (X
Multiply A by B HUL o elele|X
Negate NEG A Q RIR[A IR
accumulator or
memory location | NEG B 0 AfR|ElR
NEG ofe XIXIRIK
Subtract B from A SBA 0 RXIRA
Subtract with SBC A ofojole RIXIHIR
carry from
accumulator SBC B of{ofjoije #RIX]RIK
Subtract from SUB A of{nojnie M EAEES
accumulator
SUR B ojo|nie M EIEES
Subtract double | SUB D nlojnole RIR|X[R

Table A2-3
Logical instructions

Operation Mnemonic Hode Flags
Imm|D1r |Ind|Ext|Imp N{ZIViC
AND immediate AIM #n, aln RI¥IR]e
AND accumulator | AND A ofolole RR[RIe
AND B ojofofe XIKIR|e
Ones complement]| COM A 2 RIXIRIS
accumulator or
memory location| COM B Q XIXIRIS
con ol e RIRIRIS
EOR immediate EIN #n, oo XiXIR|e
Exclusive OR EOR A o nloje B[XiR|+
accumulator or
memory location| EOR B ofojolw BIRIR([e
Logical shift | LSR A D RIXIKIX
right
accumulator or | LSR B o RIRIX|R
memory location
LSR 0| e RIX|%[K
Double LSR LSR D b] R[XiR[R
R immediate 0IM #n, o0 RIX[R[e
Inclusive OR ORA A slo|lo|e XIX|Rle
accumulator or
memory location| ORA B olao|o]le R{X|R|+¢
Rotate left ROL A 0 RIXIKIK
accumulator or
memory location]| ROL B] XIR[RIX
ROL 0| e X[RiRIX
Rotate right ROR A] XR[RIK
accumulator or
memory location| ROR B] K[RIXK
ROR nie #R[RIK[R

A2-6

Table /24

Compar ison and test instructions

Operation Mnemonic Hode Flags
Tom{Dir | Ind[Ext}Ing N|Z{WC

Bit test BIT A ololofe XIR[R[*
accumulator

BITB njofofe RIX[RTe
Compare B with A | CBA DJ ESEA e b
Compare CHP A ojojo|e ARIR|R
accumulator

CHP B olojolwe RR[R]™
Compare PR ojofole VIRRIR
BIT immediate TIN #n, oo RIXIR[+
Test acomulator | TST A 0 XIXIRIR
or menory
location for 15T B 0 SIR{RIR
positive, zero or
negative 15T ole XIX[RIR

A2-7

Table A2-5
Branch instructions

Operation Mnemonic Branch test Flags
Unsigned | Signed N % U
Branch if C clear | BCC = 4|4
Branch if C set | BCS < lee
Branch if 2 cet | BEB = = tee
Branch if »= zero| BGE = 4+
Branch if » zero | B&T ? leie
Branch if > zero | BHI > L)
Branch if {= zern| BLE = tlele
Branch if <{= zero| BLS A= o4
Branch if < zero | BLT < sje)e
Branch if minus | BMI < siele
Branch if 2 clear| BNE <> <> slele
Branch if plus BFL =0 elee
Branch always BRA slefe
Branch never BRN slele
Branch subroutine} BSR siee
Branch if U clear| BUC No error see
Branch if U set | BUS Error t4e

Note: The assembler expects an extended mode address to be

supplied as the destination of 3 branch instruction, and

automatically converts the address into the relative offset

required by the HDA301.

Table A2-6
Program transfer and miscellaneous instructions

Operation Mnemanic Mode Flags
Tmm|Dir | Ind]Ext]Imp|H{T{N|ZIV|C
_Jump WP of e slelelalole
Jump subroutine | JSR cjlofe t{ejeelele
No operation NOP O [efelejeie]s

Interrupt return | RTI 0 | See (1)
Subroutine return| RTS 0 |elejeoie]s
Sleep SLP O [elefefeiele
Interrupt SWl O j#[S{eleie]e
fwait interrupt | WAI 0 j#[S[e[eje]s

{1» The CCR is loaded from the stack

A2-5

BF 51

BS 9

CH 17

10 53

U 59

NG 57

Error messages fppendix 3

Division by zero
The divisor is zero
® The divisor is an undefined label

Bad file mode
The file number used in a3 LST command refers to a file not opened
for output.

Bad file number
The file number used in a LST commard either refers to a3 file not
opened for output, or is not an integer in the range 1 to 16,

Bad subscript

fin error has vccurred when using global labels with the RAM file
¢ The RAM file is too small for the number of global labels used
¢ The RAM file record size is less than three bytes

Cannot continue
fin attempt is made to restart assembly after a break-in or error

Duplicate definition

A label is assigned a value twice in RDF N mode

¢ The same label is defined more than once

* @ label is assigned & different value in pass 1 and 2

Furction call error

fin incorrect value has been used as a parameter

¢ The destination of a branch instruction is out of range

* A value less than zero, or greater than 253, is used as an eight
bit data item

o The value of MEMSET is too low for the assembled object code

The assembled object code is located below &HA4B or abowe the
current value of HEMSET

Device 140 error
The device used for the listing file is faulty or has responded to
the break key

Device in use
The device used for the listing file is being used by angther
pracess, or has been incorrectly aborted

Missing operand)]
A parameter is missing from 3 command or an instruction

File not open

The BASIC file used for the listing file has been closed or was
never opened

A3-1

M 7 Out of memory

w

N

6

2

Insufficient memory space for the symbcl table

Ouerflow
The result of an expression is outside the range -32768 ta 32767

Syntax error

The format required for the command or instruction has not been
fol lowed

¢ Missing or incorrect register name or parameter

* A label starts with a keyword or is missing a "." or "!"

¢ Illegal mnemonic or command name

* Missing space after command or mnemonic

A3-2

Ad.1

Clock Prograe Aopendix 4

This appendix gives the complete listing for 3 simple clock
program. The listing is entered using the standard BASIC screen
editor. The clock program is executed automatically once the
source code 15 assembled by RUNning the program. You can stop
the clock program by pressing the BREAK key. The clock can be
re-=tarted by pressing CTRL PF3.

Listing of the clock program

10888 DEFINT A-2:1=1:605U8 1850:MEMSET CLOCKEND
1818 WIDTH "LPT8:",24:0PEN "0",1,"LPTE: "

1628 DEFINT A-Z:FOR I=1 TO 2:605UB 1858:NEXT 1
1838 EXEC CLOCK

1848 END

1858 *
1668 °
1e78 ’
1688 fAse I

1188 TTL “PROGRAM TO DISPLAV CLOCK ON LCD™
1128 FNT 235,24, ,%","" : LST 1
1148 0BJ

1168 SNSCOM EQU $FF19 ;SEND BYTE TO SLAVE

1178 DSPLCH EQU $FF49 llEﬁR SCREEN

1188 DSPLCH EQU $FF4C DISPLA'\’ CHARACTER

1198 CNTIO EQU $FFAF C[NTIH.E 1/0 AFTER BREAK
1288 LCRECV EQU $DFEE ;REIIIER VIRTUAL SCREEN
1218 RODCLK EQU SEIFR ;READ TIME

1228 SLEEP EQU $FFA9 ;SLEEP MODE ROUTINE

1248 TICK EQU 898 s TICK FREQUENCY

1258 DURATION EQU S sTICK DURATION

1268 SLUSPCOM EQU $31 ;SLAVE SPEAKER COMMAND
1278 XP0OS EQU 6 ;% CO~ORD OF CLOCK ON
1280 vPOS EQU 1 s¥ CO~-0RD OF CLOCK ON LCD
1298 COLON EQU "\:* ;SEPARATOR

1308 BREAKFLAG EQU $88 ;<BREAK> KEY FLAG

1318 PHYSFLAG EQU $48 ;PHYSICAL SCREEN FLAG
13268 UIEFLAG EQU si8 sCLOCK INTERRUPT ENABLE FLAG
1338 CLKINTFLG EQU 8 sCLOCK INTERRUPT FLAG

1348 CLKREGB EQU $48 ;CLOCK REGISTER

1358 RNMOD EGU $78 sRUN MODE UARIABLE

1368 WIOSTS EQU s7D sMASTER 1-0 STATUS

1378 CT3ADR EQU $126 CENTR(I. PF3 UECTOR

1:3933 BUFFER EQU 198 ;6 BYTE BUFFER CLOCK BUFFER
1398 ;

1408 ;

1419 ;

1428 ORE spd8

1438 ;

1448 (1.0CK

1458 ;

1468 ;SET PHYSICAL SCREEN FLAG

i:g OIM #PHYSFLAG, RNMOD
1498 ;CLEAR PHYSICAL SCREEN

1598 CLR B

gég JSR DSPLCN

1338 ;ENABLE CLOCK INTERRUPTS ONCE PER SECOND
}% 0IM BUIEFLAG, CLKREGB
1568 ;SET LP CONTROL PF3 VECTOR

1578 LDX #CLOCK

1568 STX CT3ADR

1598 ;

1608 ;

1618 MAINLOOP

1628 ;

1638 TEST FOR <BREAK> KEY

1648 TIM amsamas MI0STS
1656 BNE EX

1668 ;

1678 ;SLEEP UNTIL INTERRUPT

1688 JSR SLEEP

1699 ;

1708 ;CHECK CLOCK INTERRUPT

1718 TIM #CLKINTFLG, MIOSTS
1728 BEQ MAINLOOP

1738 ;

1748 ;RESET CLOCK INTERRUPT FLAG
%g EIM #CLKINTFLG,MIO0STS
1778 ;DISPLAY COLONS ON LCD

1788 LDA A #COLON

1798 LDX i()G’US+2}*256+VPUS
1688 JSR DSPLCH

1818 LDA A #COLON

1829 LDX ${¥POS+53%256+YP05
1838 JSR DSPLCH

1648 ;

1858 ;READ AND DISPLAY TIME

1868 BSR DISPLAYTIME

1879 ;

1888 ;PRODUCE TICK

1698 BSR PLAVTICK

1998 ;

1918 ;BRANCH BACK FOR NEXT SECOND
1929 BRA MAINLOOP

1938 ;

1948 ;

A4-2

1956 EXIT

1968 ;

1978 ;RESTORE STATUS BEFORE RETURNING TO BASIC
1968 ;

1996 ;RESET BREAK FLAG

2008 J3R CNTIO

2018 ;

2828 sRESET PHVSICAL SCREEN FLAG
% EIM #PHYSFLAG, RNMOD

2059 sDISABLE CLOCK INTERRUPT
% EIM BUIEFLAG, CLKREGB

20068 ;RESTORE VIRTUAL SCREEN
2098 JSR LCRECV

2108 ;

2118 ;RETURN TO BASIC

2128 RTS

2138 ;

2140 ;

21

58 ;
2168 DISPLAYTIME
2178 ;
2188 ;DISPLAY TIME ON LCD

2198 ;

2208 ;DISABLE INTERRUPTS
2218 SEI

2228 ;

2238 ;READ TIME

2248 LDX #BUFFER
2258 JSR ROCLK

2268 ;

2279 sDISPLAY HOURS
2208 LDA A X+3

2298 LDA B #4P05
2308 BSR DISPLAY
2318 ;

2328 ;DISPLAY MINUTES
2338 LDA A X4

2348 LDA B #4P0S+3
2358 BSR DISPLAY
2368 ;

2378 sDISPLAY SECONDS
2308 LDA A B45

2398 LDA B #2P05+6
2408 BSR DISPLAY
2418 ;

2428 sENABLE INTERRUPTS
2438 CLI

2448 ;

2458 RTS

2468 ;

2478 ;

2488 ;

2498 DISPLAY

E'S
t_ln

2518 ;DISPLIW 2 DIGITS ON LCD
2328 ;A = 2 BCD DIGITS
2538 ;B = POSITION ON LCD

2549 ;

2558 PH A

2568 LR A

2578 LR A

2380 LR A

2598 LSR A

26088 BSR DIGIT
2618 PUL A

2628 DIGIT

2638 PSH %

2648 AND A #sF
2658 ADD A 48"
2668 PSH A

2678 TBA

2688 LDA B #YP0S
2698 %6D X

27688 PIL A

2718 JSR DSPLCH
2720 %6D X

2738 TAB

2748 PUL ¥

2798 ;

2768 RTS

2778 ;

2780 ;

2798 ;

2088 PLAYTICK

2818 ;

2828 ;PRODUCE TICK

2830 ;

2648 LDA A #SLUSPCOM
2850 JSR SNSCOM
2068 LDA A #TICK \ 256
287a JSR SNSCOM
2688 LDA A #TICK MDD 256
2890 JSR SNSCOM
2989 LD A SDURATION \ 256
2918 JSR SNSCOM
2920 LDA A #DURATION MOD 256
2930 JSR SNSCOM
2949 ;

2958 RTS

2968 ;

2979 ;

2968 ;

2998 CLOCKEND EQU *

3088 ASH OFF
38i8 °’

3920 °

3938 °

3849 RETURN

fd-4

fA3.2

Multiple file clock Program fpperdix 5

This appendix gives the complete listing far aultiple file
assembly of the simple clock program described in fAppendix 4.

The listings of the three files are entered using the standard
BASIC screen editor. The clock program is ewecuted automatically
once the sowrce code is assembled by RUNning the header program.
You can stop the clock program by pressing the BREAK key. The
clock can be re-started by pressing CTRL FF3.

Header file

The header file consists of the following program:

18 CLEAR 208,8%12+4 12 GLOBAL LABELS

28 DEFFIL 2,0:PUT:8, 1 *SET UP PASS NUMBER
38 OPEN "0",1,"LPT8:" *OPEN LISTING FILE

48 VIDTH "LPT8: ", 24 "WIDTH OF LISTING FILE
98 T=TAPCNT:PUTZ1,T *SAUE TAPE POSITION

68 RUN “CLOCK1.SRC®,R

First source file

1608 DEFINT A-2

1018 DEFFIL 2,8:6ET78,P *PASS NUMBER
1815 DEFFIL 8,4 *SET UP RAM FILE
1829 IF P=1 THEN I=1 GOSUB 1858

1838 IF P=2 THEN FOR I=3 TO 4:60SUB 1858:MEXT I
1648 RUN "CLOCK2.SRC"™,R

1658 °
1868 ’
ier8 ’
1888 ASH 1

1188 TTL *PROGRAM TO DISPLAY CLOCK ON LCD®
1126 FMT 255,24, ,"%,"" : LST 1

114@ 08J

1158 5

1168 'SHSCON EQU $FF19 ;SEND BVTE TO SLAVE

1218 'RDCLK EQU SEIFA ;READ TIME

1188 'DSPLOH EQU SFF4C ;DISPLAY CHARACTER

1198 CNTID EQU sFFAF ;CONTINUE I/0 AFTER BREAK
1178 DSPLCN EQU $FF49 ;CLEAR SCREEN

1268 LCRECY EQU $DFEE ;RECOVER VIRTUAL SCREEN
1228 SLEEP EQU sFFA9 ;SLEEP MODE ROUTINE

1388 !'BUFFER EQU $198 ;6 BYTE CLOCK BUFFER
1248 'TICK EQ s TICK FREQUENCY

1256 '‘DIRATION EQU 5 s TICK DURATION

1268 'SLUSPCON EQU $31 ;SLAVE SPEAKER COMMAND
1278 '¥POS EQU 6 ;% CO-ORD OF CLOCK ON LCD

1268 'vP0S EQU 1 ;¥ CO-0RD OF CLOCK ON LCD
1298 COLON EQU “\:" s SEPARATOR

1380 BREAKFLAG EQU $88 ;<{BREAK> KEY FLAG

1318 PHVSFLAG EQU $48 ;PHYSICAL SCREEN FLAG

1328 UIEFLAG EQU $18 ;CLOCK INTERRUPT ENABLE FLAG
1338 CLKINTFLE EQU 8 sCLOCK INTERRUPT FLAG

1348 CLKREGB EQU $4B ;CLOCK REGISTER

1358 RNMOD EQ 7B ;RUN MODE UARIABLE

1368 MIOSTS EQU $70 ;MASTER 10 STATUS

{ﬁg CT3ADR EQU $126 ;CONTROL PF3 VECTOR

1428 ORG sAd8

1448 !CLOCK

1468 ;SET PHYSICAL SCREEN FLAG
1478 OIM #PHYSFLAG, RNMOD
14% ;CLEAR PHYSICAL SCREEN

1568 CiR B
1518 JSR DSPLCN
1338 ;ENABLE CLOCK INTERRUPTS ONCE PER SECOND
148 OIM RUIEFLAG, CLKREGB
1'563 ;SET UP CONTROL PF3 VECTOR
LDX #!CLOCK
15& STX CT3ADR
1618 MAINLOOP

1638 ; TEST FOR <BREAK)> KEY
TIH CHEPKFLFIG MIOSTS

1659 BNE EX

1678 ;SLEEP UNTIL INTERR!PT

1654 JSR SLEEP

1788 ;CHECK CLOCK INTERRUPT

1718 TIN #CLKINTFLG, MIOSTS
1728 BEQ MAINLOOP

1748 ;RESET CLOCK INTERRUPT FLAG

1758 EIM #CLKINTFLG,NIOSTS
1778 ;DISPLAY COLONS ON LCD

1768 LDA A #COLON

1798 LDX #{1XPOS+23%256+'VYPOS
1808 JSR !DSPLCH

1818 LOA A RCOLON

1828 LDX #{!RPOS+5 14256+ 1YPOS
1838 JSR !DSPLCH

1858 ;READ AND DISPLAY TIME

1868 BSR 'DISPLAYTIME

1858 ;PRODUCE TIL‘K

1898 BSR 'PLAYTICK
1918 ;BRANCH BACK FOR NEXT SECOND
1928 BRA MA

MAINLOOP
1958 ERIT
1978 ;RESTORE STATUS BEFORE RETURNING TO BASIC
1998 ;RESET BRERK FLAG
2008 ISR CNTIO
2828 s RESET PHYSICAL SCREEN FLAG
2838 EIM ¥PHYSFLAG, RNMOD
2858 ;DISABLE CLOCK INTERRUPT
2868 EIM BUIEFLAS, CL KREGB

2888 ;RESTORE VIRTUAL SCREEN

2098 JSR LCRECY

2119 ;RETURN TO BASIC
2128 RTS

2138 ;

2135 ASM OFF

2165

2178 RETURN

Second source file

The second source file ("CLOCK2.5RCY) consists of the following
program:

1689 DEFFINT A-2
1818 DEFFIL 2,8:6E728,P *6ET PASS NUMBER
1828 DEFFIL 8,4 *SET UP RAM FILE

1838 IF P=1 THEN 1898

1848 FOR I=5 TO 6:60SUB 2188:NEXT I:CLOSE

1858 EXEC (!CLOCK) *EXECUTE OBJECT CODE

1868 GOTO 1148

1868 1=5:G0SUB 2188

1898 DEFFIL 2,8

1188 PUT/8,2 *SET UP PASS 2

1110 GET1, T:WIND T *WIND TO START

1128 MEMSET CLOCKEND *ALLOCATE OBJECT CODE SPACE
1138 RUN "CLOCK1.SRC*,R

1148 END

2188 °*
2185 °’
2118 °
2128 ASM I
2138 ;

2168 IDISPLAYTIME

2188 ;DISPLAY TIME ON LCD

2208 ;DISABLE INTERRUPTS
2218 SEI

2238 ;READ TIME

2248 LDX #!BUFFER

2258 JSR 'RDOLK

2278 ;s DISPLAY HOURS
2260 LDA A X+3

229% LDA B #!XP0S

23868 BSR DISPLAY

2328 ; DISPLAY HINUTES
2339 LDA A K

2348 LDA B #!XPOS+3
2350 BSR DISPLAY

2378 ; DISPLAY SECONDS
2388 LDA A %45

2399 LDA B #!XPOS+6
2488 BSR DISPLAY

2428 ;ENABLE INTERRUPTS
2438 CLI

A5-3

2456 RTS
2478 ;

2498 DISPLAY

2518 ;DISPLAY 2 DIGITS ON LCD
2528 ;A = 2 BCD DIGITS

2538 ;B = POSITION ON LCD

2956 PSH A

2568 LR A

2578 LR A

2588 LR A

2598 LSR A

2600 BSR DIGIT

2618 PUL A

2628 DIGIT

2638 PSH X

2640 AND A #sF

2658 ADD A #"8"

2668 PSH A

2678 TBA

2608 LDA B #'¥P0S
2698 6D X

2788 PIL A

2718 JSR 'DSPLCH
2728 %6D ¥

2738 TAB

2748 PUL X

2768 RTS

2788 ;

2008 'PLAVTICK

2828 ;PRODUCE TICK

2048 LDA A #!SLUSPCOM
p.in] JSR 'SNSCOM
20868 LDA A #!TICK \ 256
2878 JR !

2888 LDA & $!TICK MOD 256
2898 JSR 1SNSCOM
2900 LDA A #'DURATION » 256
2919 JSR 'SNSCOM
2929 LDA A #'DURATION MOD 256
2938 JSR {SNSCOM
2958 RTS

2970 ;

2998 CLOCKEND EQU x

3080 ASH OFF

3819 °*

3838 °

3640 RETURN

AS-4

Index

Index entries refer to chapters or to sectisns within chapters.

The main reference is listed first.

Note that Cn refers to Chapter

r, AN to Appendix n and TAZ-n to table A2-n in Appendix 2.

ABY Instruction Th2-2
ADC instruction TAZ-2
ADD D instruction Taz-2
ADD instruction TA2-2
Addresing modes 4,1.1
AIM instruction TRZ-3
ARD
instruction TAZ-3
operator 2.5.3
Apostrophe, use of 2.6
Arithmetic instructions TA2-2, 4.3
ASL B instruction TA2-2
ASL instruction TH2~2
ASM command £3, 2.1
ASK
instruction TA2-2
operator 2.5.3
Assemb lar
commands £3, 2.2
features Ci
installation on ROM Al.
instructions A2, 2.2, 4.
loading from disk Al
lnading from microcassette Al
Inading from ROM cartridge Al
memory locations used by 2.
passes 2.
statements 2.
Assembling code C
Back-up
on disk Al.2.1
on microcassette Al.1.d
BASIC
accessing assembler operands 2.7
commands £
functions 2
orogr ams £z
BCC instruction TR2-5
BCS instruction TAZ-5
BEQ instruction TAZ-5
BGE instruction TA2-5
BGT instruction TAZ-5
BHI instruction TAZ-5
BIT instruction TA2-4

— .
B PS vt B e e N e £

l

BLE 1nstruction TA2-3
BLS instruction TA2-3
BLT instruction TA2-5
EMl instruction TA2-5
BNE instruction TRZ-5
BM. imstruction TA2-5
BRA instruction TRZ-5
Branch instructions TR2-5
BRN instruction TAZ-5
B3R instruction TA2-5
- BUC instruction TA2-5
BUS instruction TAZ-3
BYT operator 2.5.2
Caret symbol, use of 2.6
Carry flag A2
CBA instruction TA2-4
CCR A2
CLC instruction TA2-1
CLI instruction TA2-1
Clock program A4, A3
CLR instruction TAZ-1
CLY 1instruction TA2~1
CHP instruction THZ-4
COM instruction TR2-3
Comment 2.2
Compar ison instructions Té2~4
CP% instruction TA2-4
DA instruction TAZ2-2
Data movement instructionsz TA2-1
DEC instruction Ta2-2
DES instruction Th2-2
DEX instruction Ta2-2
Direct addressing mode 4.1.1
Dyadic operators 2.5.2, 2.5
EIM instruction Traz2-3
EOR instruction TA2-3
EGll command £3, 2.4
EQU operator 2.5.3
Error messages A3
Expressions 2.9, [2
EXT operator 2.5.2
Extended addressing mode 4.3.2

Index-1

FCB command 3
FOB command C3
Final source file 2.6.4
First source file 2.6.2
Flags a2
FMT command C3
Half carry flag A2
HDAZDL processor C4

addressing modes 4.1.1

instruction set A2, 4.1

firogr amming C4
Header file &.1, C6, AS.1
HI operator 2.9.3
Highest address limit 2.3.4
HS operator 2.5.3
Hx-20 graphic symbols 2.6

Imnmediate addressing mode 4
Implied addressing mode 4
IMF operator 2.
INC instruction T
Indexed addressing mode 4
INS instruction T
Instructions

Interrupt mask flag A2
INX instruction TA2-2
JMP ingtruction TA2-6
J5R instruction TA2-6
Labels 2.4, 2.1, 2.2
global 2.4.2, 2.5.1
loral 2.4.1, 2.5.4
LDA instruction TAZ-1
LOD instruction TAZ-1
LDS instruction TA2-1
LD¥ instruction TA2-1
Link table (3]
Listing file 2.9, 2.1
LMT command 3
L0 operator 2.5.3
Loading Assembler Al.1, A1.2, AL.3
Location counter 2.3, 2.5.1
Logical instructions TAZ2-3
Lowest address limit 2.3.4
LS operator 2.5.3
LSR D instruction 4,3.1, TA2-3
L5R
instruction TA2-3
oper ator 2.5.3
LST command £3, 2.9

Memory locations used
MEM command

MEMSET command
Metacharacters

Miscellaneous instructions

Monadic operators
MUL instruction
Multipla file assembly

Hegative flag
NEG instruction
NOB command
MOL command
NOP instruction
MOT operator
Humer ic

base

constant

expressions

0BJ command

Nbject code

0ffset

AIM instruction

Op-code

Oper ands

Operators
dyadic
monadic

OR aperator

ORA instruction

ORG command

Overflow flag

PS5 command
Paga
heading
hody
Pass numbers
Percent sign, use of
Program
position indegendent
relocatable
transfer instructions
PSH 1nstruction
P3H % 1nstruction
PUL instruction
PUL ¥ instruction

Index-2

Ch, 2.

2.19

C3

2.3, 2.8
2.6
Tha2-5
2.5.2, 2.5
TA2-2

)

P Ll Ll G 3D Al LI LA e (o) L) e OO

PRI LTINS & DD
Ter J e e e a s

]
H
2
n
"o N
leliwl
b DD e R L]

o~
o
T . « .

(_
AT
— o
|
e b

— -
>
Y

TA2-1

1, A5

TAZ-1

RAM f1le 2.4.2, 06 | 575 instruction Ta2-1
RAD command C3 |5T% instruction Thz2-1
RDB command 3 5SUB D oinstruction TH2-2
RDF command 3 5UB instruction Ta2-2
Relative addressing mode 4.1.1 SWI instruction TA2-6
Relocatable program £3, 2.3.1 Symbol table 2.4.3
Relocation 2.3.1 |5 command L3, 2.4.3
table 03, 2.3.4 '
Reserving memory 2.8 'TAB instruction ThA2-1
Reverse solidus, use of 2.6 - TAP instruction TAZ-1
RMB command C3 TBA imstruction TA2-1
ROL instruction TAZ-3 | TBL operatar 3
ROR { Test instructions TAZ-4
instruction TA2-3 | TIM instruction TA2-4
operator 2.5.3 | TPA instruction TA2-1
RTI instruction TA2-6 | T5T instruction Th2-4
RTS instruction TA2-5 | TSX instruction TA2-1
TTL command £3, 2.9.1
SBA instruction TA2-2 | TXS instruction TAZ2-1
SBC instruction TA2-2
SEC instruction TAZ-1 | Vertical bar, use of 2.6
Second source file 6.3, AS.3
SEI instruction TAZ-1 | WAI instruction Tha2-6
SEV instruction TA2-1 !
SLP instruction TA2-6 | WG % instruction Th2-1
STA instruction TAZ2-1
ST0 instruction TA2-1| Zero flag A2
String 2.6, 2.5.1

Index-3

© J.M. Wald 1985
71 May Tree Close, Winchester, S022 4JF

